If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+24x-84=0
a = 1; b = 24; c = -84;
Δ = b2-4ac
Δ = 242-4·1·(-84)
Δ = 912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{912}=\sqrt{16*57}=\sqrt{16}*\sqrt{57}=4\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{57}}{2*1}=\frac{-24-4\sqrt{57}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{57}}{2*1}=\frac{-24+4\sqrt{57}}{2} $
| -9=2d-47 | | x+15+50=90 | | 15=-6+2p+5p | | 20-4p=12 | | p^2-2p+54=0 | | 2r+-14=-58 | | x+15+50=80 | | 36x+3=75 | | x=58+x+76=180 | | (x/2)=(1/2) | | 3x-2=8x=13 | | x2+7x-5=0 | | 14-4u=2 | | 2•x+4-2x=14x-5 | | 2^a-4=82.1 | | 2^a-4=8.1 | | j/2+1=2 | | 360=840(1-x) | | -3x+4=10x | | 2x-x/4+10=x/2+x/4+5 | | y-17=29 | | 4y+2=7+9 | | (2x+4)/2=13+7 | | 3y+8=3y | | 4p–4=48 | | 0=4x^2-54x+48 | | 3(x-1)-4x=(x+2) | | 4k^2+2=k | | 10a−8a=12 | | 3(x+5)(x+8)=0 | | 2y+4=7y+8 | | -7=x-5+1 |